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transition in the value of expanding
wind and solar power generation

Enrico G.A. Antonini,1,3,* Tyler H. Ruggles,1 David J. Farnham,1 and Ken Caldeira1,2

SUMMARY

Wind and solar photovoltaic generators are projected to play important roles in
achieving a net-zero-carbon electricity system that meets current and future en-
ergy needs. Here, we show potential advantages of long-term site planning of
wind and solar power plants in deeply decarbonized electricity systems using a
macro-scale energy model. With weak carbon emission constraints and substan-
tial amounts of flexible electricity sources on the grid (e.g., dispatchable power),
relatively high value is placed on sites with high capacity factors because the
added wind or solar capacity can efficiently substitute for running natural gas po-
wer plants. With strict carbon emission constraints, relatively high value is placed
on sites with high correlation with residual demand because resource comple-
mentarity can efficiently compensate for lower system flexibility. Our results sug-
gest that decisions regarding long-term wind and solar farm siting may benefit
from consideration of the spatial and temporal evolution of mismatches in elec-
tricity demand and generation capacity.

INTRODUCTION

Wind and solar power are likely to play important roles in any successful transition to a future net-zero emis-

sions electricity system. The 2020 share of electricity generated from wind was globally 6.1%, and 3.3% was

from solar photovoltaics (Our World In Data, 2021). In recent years, these technologies have been among

the fastest growing (Enerdata, 2020). The continued fall in costs of wind and solar technologies (Interna-

tional Renewable Energy Agency (IRENA), 2020) along with ambitious climate policies in the E.U., the

U.S., China, and India, among others (European Energy Commission, 2019; International Renewable

Energy Agency (IRENA), 2015; Sierra Club, 2020), contributed to recent increases in wind and solar capac-

ities and power generation. However, meeting targets for net-zero emissions electricity systems will likely

require substantial wind and solar capacity additions.

Adding higher shares of wind and solar generation to a power system introduces the challenge of man-

aging greater generation variability. Wind and solar resources are highly variable in space and time and

not always available in quantities needed to meet electricity demand (Bird et al., 2013; Lund et al., 2015;

Rinaldi et al., 2021). Although wind and solar resources in certain regions have some degree of comple-

mentarity that can help mitigate and smooth variability (Li et al., 2009; Miglietta et al., 2017), reliable

power systems based primarily on variable energy sources require effective grid management, backup

power systems, and energy storage capacity (Aghaei and Alizadeh, 2013; Huber et al., 2014; Su and El

Gamal, 2013). A solution enabled by energy storage is temporally shifting the variable electricity gener-

ation: energy is stored in times when it would be otherwise curtailed and used in times when the variable

electricity generation is lower than current demand (Kroposki et al., 2017). Energy can be stored both for

short duration (e.g., in lithium-ion batteries or flywheels), when quick, intra-daily demand compensation

is needed (Yang et al., 2018), and long duration (e.g., in power-to-gas-to-power, pumped hydro, or com-

pressed air storage), when inter-day, inter-season, or even multi-year storage is needed (Blanco and

Faaij, 2018; Dowling et al., 2020). In addition to storage, low- or zero-carbon firm generators (e.g., nu-

clear) could potentially contribute to lowering the overall cost of decarbonized systems (Sepulveda

et al., 2018; Yuan et al., 2020). Despite these challenges faced by utilities and system operators with

high penetration of variable generation, a variety of operational and technical solutions exist to add

and integrate wind and solar generation that could be implemented in future years (Antonini et al.,
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2021; Denholm and Hand, 2011; Diao et al., 2010; Elliott, 2016; Frew et al., 2016; Gielen et al., 2019; Jen-

kins et al., 2018; Ruggles et al., 2021).

A crucial question that arises when planning for new power generation facilities at the system level is deter-

mining where to site new generation. Sites for power generation tend to be highly stable in space and time,

due to factors such as capital investment in plant and facilities, electricity transmission, permitting con-

straints, access to water, etc. The issue of siting is particularly important for wind and solar installations

because their economic viability depends largely on the availability of resources that are highly variable

in space and time. Thus far, geophysical considerations governing site selection of solar installations are

mostly solar irradiance and equivalent sun hours (Arán Carrión et al., 2008; Ramachandra and Shruthi,

2007), whereas for wind power plants, the primary geophysical consideration is mean wind power density

at the turbine hub height (Becker and Thrän, 2018; Cetinay et al., 2017). For wind power plants, system-level

planning is then followed by turbine micro-siting to determine the positions of the individual turbines to

minimize wake losses (Antonini et al., 2016, 2018a, 2018b, 2019, 2020; Dhoot et al., 2021). Methods for

optimal siting in a distributed network have been developed to consider additional criteria related to envi-

ronmental, economic, social, and technical aspects (Georgiou and Skarlatos, 2016; Prakash and Khatod,

2016; Tegou et al., 2010). Particular attention has been directed to the integration of distributed generation

into the electrical grid by looking, for example, at line loss reduction, proximity to existing grid intercon-

nects, or increased system voltage profile (Al Abri et al., 2013; Kayal and Chanda, 2013). However, these

electrical integration studies have addressed local, small-scale distribution networks (Ghosh et al., 2010;

Sadeghian et al., 2017). At large scale, energy systems planning tools have been extensively used to eval-

uate the distributions of wind and solar developments, either to meet certain generation thresholds (Jerez

et al., 2015) or to integrate themwith the electric grid and demand profiles (Bussar et al., 2016; Fürsch et al.,

2013). However, the drivers governing their optimal locations have not been systematically examined,

especially for deeply decarbonized systems with a high penetration of wind and solar generation.

Here, we show potential advantages of long-term planning when relying on distributed wind and solar power

to decarbonize an electricity system. We evaluate optimal siting of distributed wind and solar generation in

combination with energy storage and natural gas generation with increasingly strict carbon emissions limits.

We illustrate in an idealized setting how siting decisions made with foresight can lead to more efficient

asset allocation. Real-world siting decisions would require detailed analysis of both current conditions and

anticipated future conditions, and an understanding of how net present value depends on some balance of

current value and expected future value. With application to the contiguous U.S. (CONUS), we use hourly

time-averaged wind and solar resource data and electricity demand data as inputs to a macro-scale energy

model (Levi et al., 2019). The spatial distribution of wind and solar generation is evaluated based on the sub-

division of CONUS into the grid cells of a weather reanalysis dataset. For each cell, we calculate hourly capacity

factor time series of wind and solar. The macro-scale energy model allows us to evaluate least-cost solutions

with installed capacities and dispatch schedules at each location that, in combination with energy storage and

natural gas, meet the aggregated hourly demand time series (see STARMethods section, Figure 4, and Table

1 for additional details). In evaluating capacities and dispatch schedules, we consider increasingly strict carbon

emissions limits from natural gas to ultimately reach a decarbonized electricity system. The optimization to

meet those emissions constraints is run with both multi-step and single-step optimizations to assess the

impact of a short vs. long-term system planning strategy. Our analysis is stylized and aims to highlight differ-

ences betweenmulti-step and single-step approaches to decarbonizing electricity systems.Our results are not

intended to guide real-world sitingdecisions, whichwould need to take into accountmore factors than consid-

ered here. In the supplemental information, we show application to a smaller region, i.e., Texas, operated by

the Electric Reliability Council of Texas (ERCOT). This application allows us to assess any differences between

continental and regional scales and highlight any potential advantage of one versus the other. To complete

and further strengthen our analysis, for ERCOT, we also consider a case with two additional technologies,

i.e., nuclear generation and power-to-gas-to-power (PGP) storage, in combination with battery storage and

wind, solar, and natural gas generation.We also show the results of this additional analysis in the supplemental

information.

RESULTS

The results are organized as follows: we first show a high-level analysis of the system architectures and costs

resulting from increasingly strict carbon emissions limits for both multi-step and single-step optimizations.

We then analyze statistical correlations between the wind and solar capacity factors of the selected
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locations and demand profiles for increasing carbon emission reductions. Lastly, we show the spatial dis-

tribution of the selected locations for wind and solar installations.

In Figure 1, per kW of mean electricity demand, we show mean generation, system-level cost, and mean

curtailment of wind and solar generation for increasingly strict carbon emissions limits resulting from

both multi-step and single-step optimizations. The mean electricity demand is approximately equal to

460 GW. This means, for example, that a mean generation of 1.5 times greater than the mean demand cor-

responds to a mean generation of about 690 GW (�150% of the mean demand). Some of the generation by

wind and solar may be curtailed. For example, in the 99%-emissions-reduction multi-step case, about 33%

of the mean power generated by wind and solar is curtailed, which corresponds to a mean value of about

230 GW (or about 2000 TWh in terms of annual energy). In all cases, at least 99.999% of demand is met, and

penalty costs for unmet demand are always less than 0.2% of the total system cost. With no emission limits,

the electricity is generated almost entirely by natural gas with wind and solar accounting for 1.8% and 4.2%,

respectively, of the total mean generation. Because of the relatively low cost of natural gas, this system that

relies heavily on natural gas is the one with the lowest cost at 0.036 $/kWh. The high level of flexibility pro-

vided by natural gas combined with the low share of wind and solar electricity generation leads to no elec-

tricity being curtailed.

As we impose reductions of carbon emissions, multi-step and single-step optimizations result in different

systems. As emissions decrease, both approaches lead to an increase in mean generation, system cost,

and mean curtailment. Note that curtailment applies only to wind and solar generation. The multi-step

optimization results in larger increases in mean generation, system cost, and mean curtailment

compared to the single-step optimization. For example, for an 80% reduction in CO2, we have an in-

crease in total mean generation with respect to the no-emission-reduction case of 8.3% and 6.5% for

multi-step and single-step optimizations, respectively. A consistent increase over the no-emission-reduc-

tion case is observed for the system cost, where multi-step and single-step optimizations lead to 40%

and 25% higher energy costs than the no-emission-reduction case, respectively. A 99% reduction in car-

bon emissions results in a system with the highest mean generation, system costs, and mean curtailment.

The multi-step optimization leads to a system that has 6.7% more mean generation and 18% higher cost

than a single-step optimization. If we were to consider an annual electricity consumption of about 3800

TWh in 2020 in the U.S. (U.S. Energy Information Administration (EIA), 2021), the difference in system cost

between the multi-step and single-step optimizations for the 99%-emissions-reduction case can be esti-

mated to be about 42 billion dollars per year (annual electricity consumption multiplied by the difference

in system costs).

Figure 1. Mean generation, system-level cost, and mean curtailment for increasingly strict carbon emissions

limits resulting from both multi-step and single-step optimizations

The mean electricity demand is approximately equal to 460 GW.
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The system flexibility originally provided by natural gas generation in the no-emissions-reduction case is

not provided by a large share of battery storage in cases with high amounts of emission reduction. The

mean generation of battery storage is 0.6% and 0.2% of the total at a 99% emissions reduction for multi-

step and single-step optimizations, respectively. In general, these simulations suggest that battery storage

technology is used to fill short-term gaps between variable wind or solar generation and hourly demand.

Our simulations indicate that battery storage is not cheap enough, at today’s cost, to be an economically

competitive solution for seasonal storage in deeply decarbonized energy systems. These findings are

consistent with a previous study (Tong et al., 2020) that looked at different cost reductions for energy stor-

age. Energy storage with capacity costs consistent with battery technology was mainly used for short

periods of time while energy storage with capacity costs consistent with compressed air or pumped hydro-

electricity technologies was used for seasonal energy storage. Consequently, the missing system flexibility

for deep decarbonization scenarios results in a higher percentage of wind and solar energy being curtailed.

At 99% emissions reduction, curtailment is applied to about 33% and 28% of the mean wind and solar gen-

eration for multi-step and single-step optimizations, respectively.

We also perform a statistical analysis of the wind and solar capacity factors of the selected locations for various

emission reduction targets. Specifically, we analyze how the mean and standard deviation of capacity factors of

the chosen locations vary for increasingly strict carbon emissions limits. We calculate the correlation of wind and

solar capacity factor time series with the demand time series for different emissions reduction cases. We also

calculate the correlation of wind and solar capacity factor time series with the residual demand time series.

The residual demand is calculated as the demand time series minus the aggregate solar electricity generation

time series when the correlation is evaluated with the wind capacity factor time series, or minus the aggregate

wind electricity generation time series when the correlation is evaluated with the solar capacity factor time se-

ries. This quantity is useful to evaluate the degree of complimentary between the wind and solar resources. We

lastly calculate correlationsbetweenwindand solar capacity factor time series and the demand time serieswhen

smoothing filters are applied in the time domain. Specifically, we apply a 24-hour (daily) moving average, with

which we generate inter-daily and sub-daily correlations—the latter calculated by subtracting the 24-hour mov-

ing average from the original time series—and a 30-day (monthly) moving average. These moving averages are

useful to disentangle the contribution from each of the time series components (sub-daily, inter-daily, and inter-

monthly) and evaluate any statistical relevance of one versus the other. Extensive results from this statistical anal-

ysis are reported in the supplemental information.Of all the quantities thatweevaluated,wenoted that only two

showed a noticeable change in the mean value for increasingly strict emissions reductions. We convey these

main findings in the phase plots of Figure 2.

In Figure 2, we plot the changes in mean capacity factors of wind and solar installations versus the correlation

between the capacity factor time series and the residual demand for different emissions reduction targets. The

mean capacity factor of the chosen locations shows a clear decrease as emissions reductions are applied; this is

true both for single-step and multi-step optimizations. For wind in the single-step optimization, the mean ca-

pacity factor decreases from 0.48 in the no-emissions-reduction case to 0.41 in the 99%-emissions-reduction

Figure 2. Mean capacity factors of wind and solar installations versus the correlation between the capacity factor

time series and the residual demand for different emissions reduction targets

The left panel shows results for the solar installations, while the right panel for wind. For increasingly strict carbon

emissions limits, mean capacity factors generally decrease and correlations with residual demand increase.
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case. For solar in the single-step optimization, the mean capacity factor decreases from 0.30 in the no-emis-

sions-reduction case to about 0.24 in the 99%-emissions-reduction case. In the multi-step optimization, the

mean capacity factors with a 99% emissions reduction decrease to 0.42 for wind and 0.26 for solar. This trend

helps better explain the higher system cost that we observed earlier: as emissions limits become stricter and

natural gasphasesout, the systembecomesmore reliant onwindand solar generation,whichhavehigher fixed

costs than natural gas as well as lower capacity factors. As emissions reductions are enforced, the correlation

between thecapacity factor timeseries and the residual demand increases. In the single-stepoptimization, cor-

relationswith residual demand increase fromabout�0.07 forwindand0.53 for solarwith noemissions limits, to

about 0.22 for wind and 0.59 for solar with a 99% emissions reduction. In the multi-step optimization, the cor-

relationswith a 99%emissions reduction increase to about 0.22 forwind and 0.55 for solar. This indicates that as

emissions limits becomestricter andnatural gasphasesout, optimal locations have a higherdegreeof comple-

mentarity to compensate for lower systemflexibility. Also, we note a larger standard deviation and range of the

correlation values for stricter emissions limits (see the supplemental information). This indicates that as the sys-

tembecomes less flexible, locationswith different capacity factor time series help fullymeet all periods of elec-

tricity demand.

In general, with a single-step optimization, mean capacity factors decrease and correlation with residual

demand increases for increasingly strict carbon emissions limits. This behavior was present in the vast ma-

jority of cases; however, we note one case—i.e., solar mean capacity factor in the year 2017, reported in the

supplemental information—where for increasingly strict carbon emissions limits, we had a decrease in

mean capacity factor but a nearly constant, and sometimes decreasing, correlation with residual demand.

With a multi-step optimization, we observe similar, even if more irregular, trends in capacity factor and

correlation, which we attribute to system sub-optimality as described below. Recall that the single-step so-

lutions assume that the system can be built from scratch for a given emissions reduction target, thus the

solutions each represent a global optimum. The multi-step solutions, instead, start from an infrastructure

built for a weaker emissions reduction target. They therefore inherit some built capacity that does not

necessarily coincide with the global optimum of the single-step solution for the same emissions. This

sub-optimality helps explain why the correlation often decreases in the multi-step solutions as we enforce

stricter emissions reduction targets. While the system is flexible thanks to the natural gas generation, pla-

ces with the highest capacity factor are more likely to be selected, but as the system loses flexibility, cor-

relation with times when generation is insufficient to meet demand becomes more important. Note also

that in most emission-reduction cases, a multi-step solution results in slightly higher average capacity fac-

tors for installed wind and solar than a single-step solution, albeit a more costly system.

In the supplemental information, we conduct a similar analysis for ERCOT. The results are overall consistent

with CONUS in terms of mean generation, system cost, and mean curtailment. From the statistical analysis,

however, we note a substantial difference: because solar is largely uniform across Texas (i.e., it does not

have the same degree of spatial variability that wind does), the chosen locations for solar have negligible var-

iations in mean capacity factor and moderate increases in correlation with residual demand for increasingly

strict carbon emissions reductions. These results indicate that at a continental scale, energy system planners

can leverage the spatiotemporal variability of both wind and solar to reduce system costs; at regional scale,

wind has more spatial spatiotemporal variability than solar, which can be leveraged to reduce system costs.

In the supplemental information, we consider for ERCOT two additional technologies, i.e., nuclear and PGP

storage, on top of the original mix of wind, solar, natural gas, and battery storage. We find that the results

do not substantially differ after including nuclear and PGP. In fact, based on near-current costs, nuclear and

PGP come into play only for deep decarbonization scenarios. The statistical analysis also shows that the

inclusion of nuclear and PGP does not change our primary findings. Chosen locations for wind have lower

mean capacity factors and higher correlations with residual demand for increasingly strict carbon emissions

reductions. For solar at a small geographical scale, the chosen locations have instead negligible variations

in mean capacity factor and moderate increases in correlation with residual demand, consistent with the

ERCOT results without nuclear and PGP included.

Lastly, in Figure 3, we show the locations of the wind and solar installations selected by our optimizer for the

different emissions reduction cases. For each map, we show the spatial distribution of the wind or solar mean

capacity factor along with dots indicating the locations where generation capacity was installed in the least-

cost solution. We highlight differences between multi-step and single-step solutions by using different colors
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for overlapping and non-overlapping solutions. Note that most of the locations for wind installations are

sharedbetween themulti-step and single-step optimizations, while the same is not always true for solar, where

the selected locations of multi-step and single-step optimizations do not overlap as much.

For the case without emissions limits, the installed capacity of both wind and solar is limited and concentrated

in areas with high mean capacity factors, namely, the Central U.S. for wind and the Western U.S. for solar. As

emissions reductions are enforced and natural gas generation phases out, more locations that are spread over

regions with relatively highmean capacity factors are selected by the optimizer. Most of the locations for wind

installations are in the Central and Midwest U.S. with a few others on the West and East coasts. As we have

Figure 3. Locations of the wind and solar installations selected by our optimizer for the different emissions

reduction cases

For each map, we show the spatial distribution of the wind or solar mean capacity factor along with dots indicating the

locations where generation capacity was installed in the multi-step and single-step least-cost solution. Overlapping

optimal locations from these two approaches are plotted in fuchsia. The optimal, non-overlapping solutions of multi-step

and single-step optimizations are plotted in green and blue, respectively. In each panel, we also indicate how much total

normalized capacity is installed in the respective colored grid cells for both the multi-step and single-step optimizations.
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seen in the statistical analysis, wind installations tend to have a larger range in capacity factors and correlations

with residual demand for deep decarbonization levels in comparison to solar. This is reflected in wind being

sited over regions that do not have the highest capacity factors. For solar, most of the installations are in the

Western U.S. with a few others in the Northeast U.S. These lower solar capacity factor locations in the North-

east U.S. show that for systemswith lower flexibility, the regionswith the highest capacity factors are not always

the preferred ones. As the flexibility provided by natural gas diminishes, the correlation between generation

and times when other generation is insufficient to meet demand becomes more important. These solar instal-

lations in the Northeast U.S. act to broaden the net solar generation profile by adding generation in the

Eastern most regions of the U.S. where the sun predictably rises earliest each day. Solar in the East thus helps

provide relatively consistent early morning power while the Western U.S. is unlit.

Limitations of the study

In this study, we consider an idealized electricity system where the sources of energy can be natural gas,

wind, and solar, while energy can be stored in batteries or curtailed when the generation exceeds the de-

mand. For this system, we consider free lossless electricity transmission to give the greatest possible

advantage to variable wind and solar resources relative to competing technologies. Because we do not

include the constraints of grid infrastructure (Millstein et al., 2021), generation and curtailment values

are likely to be underestimates. In fact, our simulations are not intended to guide siting decisions for

real-world applications, but rather to quantify the importance of long-term planning and the potential

advantage of considering the wind and solar resource spatiotemporal variability, complementarity, and

correlation with residual demand. Grid infrastructure will be an important consideration in determining

which wind and solar sites are eventually developed and connected to the grid. Our analysis shows that

long-term planning may benefit from routing transmission not only toward regions with only high mean ca-

pacity factors but also toward regions with substantial capacity and good alignment with anticipated future

residual load. If done well, this could avoid a degree of undesirable technological lock-in.

Further, electricity delivery timing is only one of many essential grid services that will need to be delivered

by wind and solar plants in the future. In addition to balancing supply and demand, future systems with

Figure 4. Illustration of the macro-scale energy model used to understand the optimal siting of wind and solar

generation while decarbonizing electricity systems

In this idealized system, the sources of energy can be natural gas (aggregated), wind, and solar (distributed), while energy

can be stored in batteries (aggregated) or curtailed when the generation exceeds the demand (aggregated). The spatial

distribution of wind and solar generation is evaluated based on the subdivision of the contiguous U.S. into the grid cells of

the MERRA-2 reanalysis dataset, resulting in 2,586 potential locations.
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substantial wind, solar, and energy storage must supply frequency and voltage control, ramping, black-

start, automatic generation control, and other reliability services in order to manage the entire grid (Aghaei

and Alizadeh, 2013; Huber et al., 2014; Kumar et al., 2019; Su and El Gamal, 2013). Here, we conduct only a

macro-scale analysis that allows us to assess and disentangle high-level impacts of increasingly strict emis-

sions limits on the optimal siting of distributed wind and solar generation. These impacts are relevant for

energy system planners and policymakers as wind and solar photovoltaic are projected to be the dominant

generation sources in decarbonized electricity systems.

In this study, we also do not consider offshore wind development or land use constraints such as high pop-

ulation density areas, protected lands (e.g., parks, wilderness), highly productive farmlands, areas with high

environmental conservation value, or areas unsuitable for construction (e.g., wetlands, mountain slopes).

The deployment of wind on land could change significantly in more restrictive siting scenarios (Lopez

et al., 2012; Rinne et al., 2018). Nevertheless, the potential for wind energy far exceeds current U.S. elec-

tricity needs even in highly constrained scenarios (Lopez et al., 2021). Offshore wind offers a good oppor-

tunity as winds are generally stronger and more persistent over oceans (Pryor et al., 2021).

Lastly, we use technology costs taken from the U.S. Energy Information Administration (U.S. Energy Infor-

mation Administration (EIA), 2020) and Lazard’s levelized cost of storage report (Lazard, 2019). We use the

Energy Information Administration as an objective source for cost estimates; note, however, that a growing

body of research is finding that the cost of clean energy is falling faster than has been forecasted by experts

(Meng et al., 2021). As these costs decline and the ratio of costs between the different clean technologies

changes, the exact quantity of each technology that would be deployed in a least-cost system would

change. This is why we do not emphasize the exact quantity of wind or solar in the scenarios and instead

emphasize the trends. Our results are intended to be taken in a qualitative manner.

DISCUSSION

In this paper, we show potential advantages of long-term site planning of wind and solar power plants when

relying on them to decarbonize an electricity system. We use a macro-scale energy model to evaluate

Table 1. Economic, cost, and carbon assumptions

Natural gas Wind Solar Battery

Capacity (fixed)

cost type

Power capacity

[$/kW]

Power capacity

[$/kW]

Power capacity

[$/kW]

Energy capacity

[$/kWh]

Capacity (fixed) cost 954 1,319 1,331 366

Project life [yrs] 30 25 25 10

Discount rate [%] 7 7 7 7

Capital recovery

factor [%]

8.1 8.6 8.6 14.2

Fixed O&M cost

[$/kW-yr]

12.1 26.2 15.2 12.3

Variable O&M cost

[$/kWh]

0.00186

Fuel cost [$/kWh] 0.0191

Round-trip efficiency 0.9

Self-discharge rate

[% per hour]

0.00001

Charging time [h] 4

Carbon emissions

[kgCO2/kWh]

0.461

Fixed cost [$/kW/h] 0.0102 0.0159 0.0148 0.00735

Variable cost [$/kWh/h] 0.021

Values taken from the U.S. Energy Information Administration (U.S. Energy Information Administration (EIA), 2020) and Laz-

ard’s levelized cost of storage report (Lazard, 2019).
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capacities and dispatch in least-cost electricity systems with distributed wind and solar generation, energy

storage, and natural gas generation with increasingly strict carbon emissions limits. This macro-scale

analysis allows us to assess and disentangle high-level impacts of increasingly strict emissions limits on

the optimal siting of distributed wind and solar generation. These impacts are relevant for energy system

planners and policymakers as wind and solar photovoltaic, according to various energy system pathways

(Frew et al., 2016; Jacobson et al., 2017; Larson et al., 2020), are projected to be the dominant generation

sources in decarbonized electricity systems.

In our simulations with no emissions reduction constraints, natural gas is the dominant energy source, and

its use provides a high degree of flexibility to the system so that the few locations with wind and solar in-

stallations are characterized by high capacity factors. As generation from natural gas phases out because of

stricter emissions limits and electricity systems increasingly rely on wind and solar generation, an increasing

fraction of additional wind and solar generation is curtailed, and optimal locations for wind and solar

generation have higher correlation with residual demand and lower capacity factors. Multi-step and

single-step optimizations for different emissions reduction targets demonstrate that consideration of

long-term needs in wind and solar siting decisions results in less mean generation, less mean curtailment,

and lower system cost.

This study suggests that when there is a substantial amount of flexible generation (or dispatchable storage)

on a grid with widely available high-voltage transmission and negligible losses, the primary geophysical

factor governing the value of wind and solar infrastructure at a continental scale is resource amount.

With a high degree of flexibility in the system, wind and solar generation can safely be installed in regions

with the highest capacity factors without considering correlation with residual demand. Shallow decarbon-

ization (i.e., 50% emissions reduction) results in only a slightly higher system cost and almost negligible

curtailment because natural gas provides sufficient grid flexibility. When we get to deep decarbonization,

the need to meet demand without dispatchable generation means that the quality of the resource be-

comes important, and maximizing quantity of generation can yield suboptimal results. With little flexibility

in the system, wind and solar assets can have greater value if locations are chosen where power generation

correlates with residual demand (i.e., demand minus generation by variable renewables). For smaller

geographical regions, optimal locations for wind show mean capacity factors that generally decrease for

increasingly strict emissions reductions, while correlation with residual demand increases. Solar, in

contrast, is largely uniform and does not have a lot of spatial variability that can be leveraged to reduce

the system costs with strategically selected locations.

Real-world siting decisions would require detailed analysis of both current conditions and anticipated

future conditions, multi-decadal analyses, and more granular energy system models. In this study, we

showed in an idealized setting how siting decisions made with foresight can lead to more efficient

asset allocation. Such findings could lead to other important questions that would need to be answered

as we move to decarbonized energy systems with a high penetration of variable wind and solar generation.

For example, if wind and solar resources in remote locations can help reduce the cost of deeply decarbon-

ized energy systems, it becomes important to understand how that reduction would compete with the cost

of adding or expanding transmission in places where ultrahigh-voltage lines are not already available. If

ultrahigh-voltage lines were available, it may be that the complementarity of wind and solar resources,

enabled on a large scale, could reduce the need for construction of dispatchable generation plants and

physical storage such as battery packs. One further aspect that deserves consideration is related to the de-

mand time series. Changes in demand patterns given, for example, by the electrification of the transpor-

tation or heating sector could have an influence as big as changes in generation patterns in determining

where the next best location is for wind or solar. Lastly, we have performed a least-cost analysis in the

absence of socio-political constraints on the construction of electricity generation or transmission infra-

structure. In the United States, and in other countries, there are often substantial socio-political challenges

in siting such facilities. While our study does not attempt to simulate these challenges, our study highlights

the importance of considering, in siting decisions, not only the benefit such infrastructure would provide

today, but also where such infrastructure might provide the most benefit over the long term.

Many factors must be considered when choosing sites for expansion of wind and solar generation capacity.

Our study suggests that there may be value in including in this list consideration of how residual demand

will evolve over time as the flexibility now provided by natural gas is removed from the electricity system.
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Such consideration will place a higher value on the quality of the wind or solar resource, specifically its cor-

relation with residual demand, and lower value on the mere quantity of wind or sun available. This analysis

can be helpful in guiding energy system planners and decision makers for developing least-cost systems

that leverage not only wind and solar resource amount (resource quantity) but also their spatiotemporal

variability, complementary, and correlation with residual demand (resource quality). For example, system

planners may want to increasingly geographically diversify wind and solar farms as energy systems decar-

bonize. Consideration of the quality wind and solar resources available at each site, and not only the quan-

tity of wind or solar power available, could help buffer against simultaneous wind or solar lulls across a

portfolio of wind and solar assets.
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tact, Enrico Antonini (eantonini@carnegiescience.edu).

Materials availability

This study did not generate new materials.

Data and code availability

d Input data (wind and solar resources and electricity demand) required to reproduce the results reported

in this paper were retrieved from the MERRA-2 reanalysis weather dataset (Gelaro et al., 2017) and from

balancing authorities across the contiguous U.S. (Ruggles et al., 2020).

d Code and instructions required to reproduce the results reported in this paper are available in the

GitHub repositories at https://github.com/eantonini/Distributed_wind_and_solar_generation and

https://github.com/carnegie/MEM_public/tree/Antonini_et_al_2022.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

METHOD DETAILS

In this study, we use a macro-scale energy model called MEM (Dowling et al., 2020; Henry et al., 2021;

Rinaldi et al., 2021; Yuan et al., 2020), illustrated in Figure 4. It includes a set of electricity generation fa-

cilities and a firm electricity load in the form of an hourly demand time series. For each generation facil-

ity, the model requires cost assumptions. For wind and solar electricity generation facilities, the model

also requires hourly capacity factor time series. The model uses a least-cost linear optimizer to find

the installed capacities and hourly dispatches for all electricity generation facilities included in the sys-

tem. Curtailment is allowed for wind and solar electricity generation when supply exceeds demand, re-

sulting in a loss of energy. The model includes an unmet demand component represented with a penalty

cost (10 $/kWh). This feature is useful to provide some small degree of flexibility to prevent the situation

where extremely costly and infrequent electricity supply shortages strongly influences the optimization

results. Further, the macro-scale energy system assumes lossless transmission from generation to load.

Real-world transmission losses and regionalization of generation and demand would result in increased

discrepancies between supply and demand relative to our idealized scenario. The governing equation of

the macro-scale energy model that we use are provided below. Notice that the macro-scale energy

model is a closed electricity system, and we did not consider flexibility mechanisms associated with

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Macro-scale energy model (MEM) Ken Caldeira’s research group https://github.com/carnegie/MEM_public/

tree/Antonini_et_al_2022

Gurobi optimizer Gurobi optimization https://www.gurobi.com/products/gurobi-optimizer/

Cost assumptions

Wind, solar, and natural gas technologies Energy Information

Administration (EIA)

https://www.eia.gov/outlooks/archive/aeo20/

assumptions/pdf/electricity.pdf

Battery technology Lazard’s levelized cost

of storage report

https://www.lazard.com/media/451087/

lazards-levelized-cost-of-storage-version-50-vf.pdf

Input data

Reanalysis weather data NASA’s MERRA-2 https://doi.org/10.1175/JCLI-D-16-0758.1

Electricity demand data U.S. balancing authorities https://doi.org/10.1038/s41597-020-0483-x
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the conversion of electricity into heat, fuel, or other types of energy services. We use the term flexibility

here to refer to the degree to which the power system can adjust generation by means of storage (e.g.,

batteries) or dispatchable technologies (e.g., natural gas) in reaction to variability of demand or non-dis-

patchable technologies (e.g., wind and solar).

We use this model to study a transition to deeply decarbonized electricity systems that rely mostly on wind

and solar generation facilities. We are interested in understanding what drives the optimal, least-cost siting

of wind and solar installations as natural gas generation phases out because of increasingly strict carbon

emissions limits. We consider an idealized electricity system where the sources of energy can be natural

gas, wind and solar, while energy can be stored in batteries or curtailed when the generation exceeds

the demand. Our focus is on resource quality and not on future geographic relationships among resource

quality, transmission infrastructure, and demand. Therefore, we consider a system with free lossless elec-

tricity transmission. While this assumption may not be currently realistic for some countries or continents,

such as the US, projects for developing continental, ultra-high-voltage power lines that would minimize

transmission losses are underway, for example, in China (Americans for a Clean Energy Grid (ACEG),

2020; Bloomberg News, 2020) or are being proposed in the U.S. for the coming years (White House,

2021). Free lossless transmission is instead a better approximation for a smaller region like Texas, which

we analyze in the supplemental information. In such systems with lossless transmission, location matters

primarily for wind and solar power, while batteries, natural gas, and demand can be considered in aggre-

gate because their contribution to the system cost is not affected by their spatial variability. Cost assump-

tions for our analysis are reported in Table 1.

The spatial distribution of wind and solar generation is evaluated by subdividing the contiguous U.S. into

the grid cells of the MERRA-2 reanalysis dataset (Gelaro et al., 2017). The dataset has a spatial resolution of

0.5� latitude x 0.625� longitude. Over the contiguous U.S., there are 2,586 grid cells with horizontal dimen-

sions ranging from about 55 km 3 45 km to 55 km 3 62 km. We refer to each of these grid cells as a ‘‘loca-

tion’’. For each location, we calculate hourly capacity factor time series of wind and solar. For each location,

we also set maximum capacity limits to prevent unrealistic, concentrated installations of wind or solar gen-

eration from being selected by the optimizer. These limits are given by geophysical constraints on the avail-

able mean wind and solar power per unit land and depend on the local characteristics of the solar irradi-

ance and wind resource.While complex and sophisticated estimations of these limits are available that take

into consideration many factors in addition to resource quality (Antonini and Caldeira, 2021a, 2021b;

Mackay, 2013; Miller et al., 2015), in keeping with the illustrative quality of our analysis, we consider

resource quality only; we use two fixed values that are consistent with observations, namely, 1 and 5

W/m2 for wind and solar generation, respectively (Miller and Keith, 2018). The maximum capacity for

each location is calculated by multiplying the maximum power density by the cell area. Note that we do

not consider restricted areas with potentially conflicting land uses, such as high population density areas,

protected lands (e.g., parks, wilderness), highly productive farmlands, areas with high environmental con-

servation value, or areas unsuitable for construction (e.g., wetlands, mountain slopes). In general, the res-

olution of the MERRA-2 dataset does not provide a sufficient level of granularity to consider such con-

straints. Each grid cell has dimensions that allow some flexibility with regard to the exact location of

potential wind and solar power plants while meeting the cell’s total generation.

The capacity factors of wind and solar at each location are calculated as follows. For wind, we assume a

wind turbine hub height of 100 m. We estimate the wind speed at the corresponding hub height using a

power law and interpolating 10 m and 50 m values retrieved from the MERRA-2 dataset to 100 m. The

calculation of wind capacity factor uses a piecewise function consisting of four parts (Clack et al.,

2016; Shaner et al., 2018): (i) below the cut-in speed (uci) of 3 m/s, the capacity factor is zero, (ii) between

the cut-in speed of 3 m/s and rated speed (ur) of 12 m/s, the capacity factor is u3=u3r , (iii) between the

rated speed of 12 m/s and the cut-out speed (uco) of 25 m/s, the capacity factor is 1, and (iv) above

the cut-out speed of 25 m/s, the capacity factor is zero. For solar, we calculate the solar zenith angle

based on the geographic location and local time. The solar incidence angle is then estimated by consid-

ering a single axis tracking solar panel system (Braun and Mitchell, 1983), with a tilt angle of 0� (i.e., hor-
izontal axis of rotation) and a maximum rotation angle of 45� with respect to the vertical direction. The

total received solar radiation is composed of direct and diffuse radiation components (McCormick and

Suehrcke, 1991), which are calculated based on the solar incidence angle and the incoming solar
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radiation at both surface and top-of-atmosphere. The panel efficiency then results from the in-panel solar

irradiance and the ambient temperature (Huld et al., 2010; Pfenninger and Staffell, 2016).

We consider optimizations over one calendar year. We have hourly time-averaged wind and solar resource

data from the year 2019, obtained from the MERRA-2 reanalysis weather dataset (Gelaro et al., 2017) and

electricity demand data from the year 2019, obtained from balancing authorities across the contiguous U.S.

(Ruggles et al., 2020). We show results for 2019 in themain body of the text, and show results for 2016, 2017,

and 2018 in the supplemental information to demonstrate that results are consistent despite the expected

inter-annual variability of wind and solar resources (Ruggles and Caldeira, 2022). While a multi-decadal

analysis with projections of future demand and resources would providemore realistic results, our idealized

approach can reveal and disentangle system-level relationships and characteristics of optimal siting of

distributed wind and solar generation in a decarbonized electricity system.

The decarbonization of electricity systems in our model is implemented with increasingly strict carbon

emissions limits. The generation from natural gas entails a certain amount of CO2 for each kWh produced.

We first calculate the emissions that would be released by supplying all the electricity with natural gas gen-

eration, and we then set reductions of 50, 80, 90, and 99% of the original emissions. The optimization to

meet those emissions constraints is run in two different ways. The first one considers a multi-step optimi-

zation, i.e., as new, stricter emissions limits are imposed, the built infrastructure from the less strict

constraint is kept, and new wind and solar generation is added to replace the missing generation from nat-

ural gas. The second approach considers instead a single-step optimization, i.e., we determine the system

infrastructure for a given emissions constraint that would be in place if we could build such a system from

the beginning. The comparison between these two approaches will allow us to assess the impact of a short

vs. long term system planning strategy.

Macro-scale energy model (MEM)

In this study, we use a macro-scale energy model. It includes a set of electricity generation facilities and a

firm electricity load in the form of an hourly demand time series. For each generation facility, the model

requires cost assumptions, carbon emissions assumptions, and hourly capacity factor time series. The

model uses a linear optimizer to find the installed capacities and hourly dispatches, for all electricity gen-

eration facilities included in the system, that minimize total system cost. Curtailment is allowed for variable

renewable energy generation when supply exceeds demand. The model includes an unmet demand

component represented with a penalty cost (10 $/kWh).

Each technology (natural gas, n, wind, w, solar, s, or battery, b) is characterized by a fixed hourly cost result-

ing from the capital expenditure, ccapital, and operation and maintenance costs, cO&M:

cn;w;s;b
fixed =

gcn;w;s;b
capital + cn;w;s;b

O&M

h
; (Equation 1)

where h is the number of hours per year and g is the capital recovery factor, defined as:

g=
ið1+ iÞn

ð1+ iÞn � 1
; (Equation 2)

where i is the discount rate and n is the asset lifetime in years. Natural gas is also characterized by a variable

cost, cvariable.

In the model, we introduce constraints on the installed capacity for both wind and solar, C:

0% Cw;s % Cw;s
max (Equation 3)

as well as constraints on the dispatch time series for natural gas, wind and solar at each time step, Dt:

0 % Dn;w;s
t % Cn;w;s: (Equation 4)

Batteries are characterized by constraints on the energy flowing into them, Dto�b
t :

0 % Dto�b
t %

Cb

tb
; (Equation 5)
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and energy flowing from them, Dfrom�b
t :

0% Dfrom�b
t %

Cb

tb
; (Equation 6)

where tb is the storage charging duration. The total energy available in the batteries, St, is also constrained

by the total capacity:

0 % St % Cb; (Equation 7)

and the energy flowing from the batteries is affected by the battery decay rate (fraction of energy loss per

hour), db

0 % Dfrom�bt
t % St�1

�
1� db

�
: (Equation 8)

The battery storage energy balance is modeled with the following equations, where for t = 1:

S1 =
�
1� db

�
STDt + hsDto�b

T Dt �Dfrom�b
T Dt; (Equation 9)

and for t > 1:

St + 1 =
�
1� db

�
StDt + hsDto�b

t Dt �Dfrom�b
t Dt; (Equation 10)

where hs is the battery electrolysis efficiency.

The whole system energy balance is defined as follows:

X

n; w;s

Dn;w;s
t Dt +Dfrom�b

t Dt +Dud
t Dt =Mt +Dto�b

t Dt +Cu; (Equation 11)

where Mt is the demand at time t, Cu the curtailment, and Dud
t the unmet demand.

Lastly, the objective function to minimize is the system cost:

X

w;s;b

cn;w;s;b
fixed Cw;s;b +

P
tc

n
variableD

n
t

T
+

P
tc

udDud
t

T
(Equation 12)

where cud is the cost for the unmet demand (10 $/kWh).
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